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Nonlinear resonant oscillations in open tubes 
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A gas in a tube, one end of which is open, is driven by a periodic applied velocity 
or pressure a t  or near a resonant frequency. Damping is introduced into the 
system by radiation of energy through the open end. It is shown that shocks are 
possible at an open end and that there is a critical level of damping which 
ensures a continuous gas response for all frequencies. At the critical level the 
amplitude of the response is O ( d ) ,  where B is the amplitude of the input, and 
it is bounded by the amplitude predicted by linear theory. There is agreement 
with the qualitative experimental results available. 

1. Introduction 
A gas is contained in a tube which is open at one end. At the other end a 

periodic velocity or pressure drives the gas. In  this paper we examine the small 
amplitude, periodic vibrations of the gas which result when the applied fre- 
quency is a t  or near a resonant frequency. Seymour & Mortell (1973; hereafter 
referred to as I) considered the case when the end of the tube was closed and 
showed how to introduce damping due to radiation into the theoretical model. 
The result was that the quantitative agreement between theory and experiment 
was quite satisfactory and considerably better than had been previously 
attained. Damping is introduced in the same manner here and one of the principal 
aims is to examine the effect of this damping on the frequency range for which no 
continuous solutions exist in the undamped theory. We prove, as was shown 
for the closed tube in I, that, for a given forcing function, there is a critical level 
of damping ,uc which ensures continuous solutions for all frequencies. 

The basis for the analysis presented here is the realization that a sufficiently 
accurate estimate of the travel time of a wave over one cycle of the motion is 
essential for the prediction of a bounded motion at resonance. When the applied 
frequency is sufficiently far from the linear resonant frequency the travel time 
calculated from linear theory is adequate. However, as the difference between 
the linear travel time and the period of the applied signal tends to zero the non- 
linear correction i s  no longer negligible and, in fact, is essential to ensure a bounded 
solution. Inclusion of the nonlinear terms results in amplitude dispersion which 
distorts the signal. This distortion must be cumulative over one period to affect 
the solution. We show that the distortion induced by the quadratic term in the 
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equation of state (i.e. the first nonlinear correction to the travel time) is cumu- 
lative for reflexion from a closed end, but not for an open end. Hence, for an open 
end we require the second nonlinear correction to differentiate between travel 
times computed from linear theory and nonlinear theory. With an accurate 
travel time in hand, the boundary conditions lead to a nonlinear functional 
equation determining the signal carried by a wave. In  the small rate limit this is 
reduced to a nonlinear ordinary differential equation. 

The undamped limit of one of the problems (applied velocity) discussed here 
has been treated previously by van Wijngaarden (1968), Mortell (1971) and 
Collins (1971).t  The results of van Wijngaarden’s theory are that the pressure is 
continuous and has an amplitude O(s*), where the piston amplitude is O(E). 
The amplitude result is a direct consequence of the nonlinear boundary condition 
which he used to model the open end. An examination of his principal result, 
equation (7 .S), shows that amplitude dispersion (nonlinear convection) plays 
no role in his model. The theory used by Mortell(l971) is based on a travel time 
which depends only on terms up to second order in the equation of state. For 
reasons stated above, and expanded upon in the text, this is not a sufficiently 
accurate model. Collins (1971) showed that, under certain restrictions on the 
applied frequency, the undamped gas motion was continuous with an amplitude 
O(E*).  His technique for deriving the governing differential equation is essentially 
a perturbation expansion in powers of the resulting amplitude sf. The disadvan- 
tage of using this procedure for the damped motion is that the order of magnitude 
of the resulting motion in terms of fractional powers of E must be assumed. Since 
this is determined by the level of damping present, it is more useful to obtain a 
governing equation valid for a range of the damping parameter and hence a 
variety of resulting amplitudes. We find such an equation here by calculating 
the travel time using a variant of Lin’s technique (1954). 

Damping is introduced into the theory through the boundary condition 
p ( t )  = -ju(t) at x = 0, where p and u are suitably normalized pressure and 
velocity. The casej = 0 corresponds to an open end in acoustic theory. When 
0 < j < 1, there is loss of energy through the boundary since the transmission 
coefficient p = 2j/( l  +j) is non-zero. We prove that when ,u > ,uc = O(e8) a 
continuous solution exists for all frequencies. When p < ,uc there is a well-defined 
frequency band in which continuous solutions are not possible. Outside this band 
there is again a continuous periodic solution. Whenever there is a continuous 
solution it is unique, and is bounded by the linear solution which has magnitude 

The theoretical work of van Wijngaarden is substantiated in his paper by his 
experimental observations. B. Sturtevant (1972, private communication) has 
made available to us certain features of experiments which he has conducted 
using a piston to drive a gas in an open tube. He reports that the pressure on the 
piston is continuous and has an amplitude which is consistent with O(e*). The 
pressure at the open end may be discontinuous. Lettau (1939) observed shocks at  
the open end when the piston operated a t  a higher harmonic. 

O(E/P). 

t See Note added in proof, p. 748. 
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2. Formulation linear theory 
A column of gas, of length L in some reference state, is contained in a pipe. 

One end of the pipe is open while at the other end a periodic applied velocity or 
traction drives the gas. If the pressure and density are measured from their 
values in the reference state (po,po) with the associated sound speed a,, then 
in terms of the non-dimensional variables aou, pouop, pop, and Lx and LaGlt, 
the governing equations in Lagrangian form are 

[ ( l+e)- l ] t -ux  = 0 (2.1) 

and U,+PX = 0, (2.2) 

where e ( = p - 1)  is the condensation, y p  the excess pressure ratio and u the 
non-dimensional particle velocity. The equation of state for the isentropic flow 
of an ideal gas in these variables is 

y p  = ( l + e ) Y -  1. (2.3) 

The end x = 0 is open or ‘nearly open’ in the sense that the possibility of radiation 
of energy through this end is allowed. Across the interface at  x = 0 the pressure 
and velocity are continuous, and so the disturbance must be compatible with 
the homogeneous boundary condition 

p(0 ,  t )  = - M O ,  0, (2.4) 

where (y j ) - l (  2 0) is the impedance of the interface. The essential assumption in 
writing (2.4) is that the motion in the surrounding medium is generated by the 
passage of a simple wave. A fuller discussion of such a boundary condition is 
given by Mortell & Varley (1970). We consider two separate boundary conditions 
at x = I which, it turns out, produce similar vibrations in the gas. They are 

u(1,t) = H(wt)  (u ,p  problem) 

and p(1 ,  t )  = H(o t )  ( p , p  problem). ( 2 . 5 )  

The u,p  problem corresponds to a gas in an open-ended tube being driven by an 
applied piston velocity at  the other end. The p ,  p problem corresponds to a gas 
motion generated by an applied pressure or traction a t  one end while the other end 
is open. The amplitude of H is B (< 1) and its period is normalized so that 
H(y + 1 )  = H ( y ) .  Further, H has zero mean over one period, so that 

1: a ( s )  as = 0. (2.6) 

Equations (2.1)-( 2.3) are nonlinear and admit discontinuous solutions. How- 
ever, it  has been shown by Mortell & Seymour (1973) that for any  time-periodic 
motion the mean pressure and velocity do not vary from particle to particle. If 
the constant mean pressure and velocity of the periodic state are chosen as the 
reference state, (2.4)-(2.6) imply that the means of u and p are zero. We seek 
solutions u and p of (2.1)-(2.5) which have the same period as H and have zero 
mean over this period. 
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A boundary condition of the form (2.4) was used in I in discussing motions in a 
nearly closed tube ( j  % 1) generated by an applied velocity (the u, u problem). 
Two significant consequences were noted : the introduction of damping through 
(2.4) could prevent the occurrence of shocks in the flow and always reduced the 
amplitude of the motion. The latter result was used to obtain a better correla- 
tion between theory and experiment by an appropriate choice of j. The para- 
meterj will be used in the same way here. A discussion o f j  as a ‘lumped ’ damping 
parameter is also given in I .  

2.1. Linear theory 

When (2.1)-(2.3) are linearized the pressure and velocity are given by 

p = -f (q + f=) - g(q - ax), u = f (7 + 0x1 - g(q - wx), (2.7) 

where 7 = wt and f and g are arbitrary. The boundary condition (2.4) implies 
that g ( q )  = - kj(r), where k = (1 -j)/(l + j )  is the rejlexion coeficient at x = 0. 
For thep,p problem ( k  = l), on applying (2.5) and eliminating g,  f satisfies 

f ( r + w ) - f ( r - w )  = -B(Y)* (2.8) 

This is a linear functional equation which relates the signal f on x = 1 to the known 
forcing function H .  We seek solutions of (2.8) which, like H ,  have unit period. 
Further, as a consequence of (2.7) and the fact that u andp have zero mean over 
one cycle, f and g also satisfy 

Equation (2.8), which determines f for the p , p  problem, has no bounded solu- 
tions with unit period when w = o,, = +n (n = 1,2,3, ...). Similarly, the corre- 
sponding functional equation which determines f for the u , p  problem has no 
bounded solutions with unit period when w = wo = in  (n = 1,3 ,5 ,  ...). The 
frequencies wo are the linear resonant frequencies. In  this paper we construct a 
nonlinear theory which allows a bounded solution with unit period for any fre- 
quency and examine the effect of damping on these solutions. 

Linear theory fails when the travel time of the waves coincides with the period 
of the driver. Then all amplitudes in the signal are simultaneously in phase 
with the driver. A nonlinear wave is amplitude dispersed, so that different ampli- 
tudes in the signal travel with different speeds. Only wavelets of a particular 
amplitude can be in phase with the driver, while all others are out of phase. For 
example, when the resonating wavelets are those carrying zero amplitude (and 
hence travelling at  the linear speed) the system is operating a t  a linear resonant 
frequency, The nonlinear contribution to the travel time in the tube is always only 
a correction. However, as the difference between the linear travel time and the 
period of the driver tends to zero, the nonlinear contribution cannot be neglected- 
in fact it  will be the dominant part of the functional equation. It is clear that a 
suitably accurate approximation to the nonlinear travel time is needed to solve 
the resonant problem. A systematic means of doing this is given in the next 
section. 
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3. Representations for the travel time 
In  this section a variant of Lin’s (1954) technique is used to find systematically 

the influence of nonlinearity on the travel time of waves in the tube. This tech- 
nique was used in Mortell (1971) to calculate the first correction to  the linear 
travel time. It emerges here that resonant phenomena involving open ends 
depend on the third-order terms, and thus the second correction to the linear 
travel time is needed. 

It is convenient to reformulate the basic equations (2.1)-(2.3) in terms of their 
Riemann invariants and characteristic curves. Upon defining 

where 

(2.1)-( 2.3) define the Riemann invariants 
az(e) = (1 + e)2 (dplde), 

2f(B) = u - c = u - p  + O(e2), 

-2g(a) = u + c  = u+p+O(e2).  and 

The associated characteristics a and P are given by 
at - - a(c) - ax at ax 

dB = a(c) -  ap’ z- da‘ 

For the isentropic flow of an ideal gas, (3.1) and (3.2) imply that 

a(c) = i + M C  + N C ~ +  o(C3), 

whereM = *(y+l) > OandN= 4(7 -1 ) (7 -2 ) .  
We assume an expansion of the form 

x(a, 8) = zo(a, P )  +x,(a,  P )  +%(a, P )  + . * .,I 
t(a, P )  = to(a, P> + tl(a, 8) + t ~ a ,  P )  + . . . J and 

where ti(a, P )  and zi(a, 8) are O(f”, gi). Then (3.4) implies that 

(3.3) 

Thus 

where a and have been parametrized by the condition that 

a = p = w t  on x = O .  

On using (3.5) and (3.3) andnoting wtOU = wtofi = Q, (3.4) gives, at the next order, 

and 

47 F L M  60 
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are determined by the condition that on x1 = 0 

a10 = to = t ,  p/w = to = t. 

Then t and x are given, to  this order, by 

and 

(3.10) 

when use is made of (3.7)-(3.9). It is noted that no appeal to the boundary con- 
ditions has been made in deriving (3.10). 

If now we consider the u, u problem in w-hich the end x = 0 is closed, so that 
g = f, and u = H on x = 1, then (3.10) implies that 

T = 2 i- (Mlw)  (p - .)f(.) + O(j", H ) .  (3 .11)  



Nonlinear resonant oscillations in open tubes 739 

The integral term in (3.10) has vanished owing to the zero-mean condition (2.9). 
In  this case f = O(s4) (see I) and then the correction terms f 2  and H are of the 
same order. 

On the other hand, if x = 0 is open, so that g = -f, and p = H on x = 1, 
then (3.10) implies that 

T = 2 + O(fz, H). (3.12) 

The result (3.12) shows that if one uses only theJirst nonlinear correction, given 
by (3.7), to the characteristics to solve a problem involving an open end, then 
the signal f is determined by a linear functional equation. This point was not 
appreciated in Mortell(l971). In  the analysis given there for problems involving 
an open end the functional equation was derived on the basis of (3.7) to model re- 
flexion from a piston and it was mistakenly assumed that the distortion would 
further accumulate on reflexion from the open end. 

The basic difference between resonant motions in open and closed tubes is 
typified by (3.11) and (3.12). The correction to the linear term at order f in 
(3.11) shows that there is cumulative distortion of the signal at this order for 
reflexion at a closed end. The cumulative distortion does not occur until order f 
for reflexion from an open end, and consequently the travel time must be calcu- 
lated to this order. 

4. Functional and differential equations for the signals 
In  this section we set up functional equations, on the basis of (3.10)) for both 

the u, p and p ,  p problems when the end x = 0 is 'nearly' open. These are then 
reduced, in the small rate limit, to nonlinear ordinary differential equations for 
the signal f on x = 1. For simplicity the details for thep, p problem only are given. 

Consider the wavelet /3 = Po leaving x = 1 at time t = to which is reflected at  
x = 0 at  time t = Po = a,. This reflected wavelet a = a, arrives at x = 1 a t  time 
t,, and is reflected as /3 = /3, (see figure 1). The boundary condition (2.4) implies 
that 

s(aJ = -kf(Po)t k = (1-M1+A, (4.1) 

while the condition that, on x = 1, p = H(wt) yields 

f(P1) +g(a,) = -H(wt,). 

fV1) - kf(P0) = - H(wt,), 
Elimination of g gives 

where pi= Po + wT. (4.4) 

T is given by (3. lo), in which pis replaced by p,, a by Po and g by - kf. Equations 
(4.3), (4.4) and (3.10) then define anonlinear functional equation for the unknown 
signal f. The expression (3.10)) however, is unmanageable in its present form. We 
simplify it as follows, First, we set o = + n ( l + & ) ;  that is, we are interested in 
frequencies near the linear resonant frequency wo = in.  Then w-'(P-a) is 
approximated by 2 + M[f(/3) - kf(a)] for terms involving f and by 2 for terms in- 
volving f2. The integrals are treated in the same way. Thus the error always 

47-2 
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i=t*  

1=t, 

- x  
s = o  x= 1 

FIGURE 1. Wave diagram for p , p  problem. 

remains O(f3). When corresponding terms are then grouped, (3.10) yields, on using 
(4.3), thezero-mean condition (2.9) and 11 -kl < 1 (‘nearly’ open), 

Pl = Po + n + nQ + M [  - wH(wtl) + 4nQf(Po)l 

In the small rate limit Iwf’I < 1 and In81 4 1, iff&) is expanded using (4.5) and 
the periodicity conditionf(7) = f ( q  + n), then (4.3) and (4.4) reduce to 

[n(l +4)bf2(r )  - w M ~ ( q )  + tnQMf(7) +7@+a)If’(r) = --B(r) - r~ f (~ ) ,  (4.6) 

where 8 ( ~ )  = H(q+w) ,  b = 4(5M2-44N), p = I-k 

and 

The order of magnitude off depends on the size of the transmission coefficient 
p, where p < 1. Linear theory implies that alwaysf = O(H/p) .  To obtain a con- 
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sistent balance of terms in (4.7) nonlinear theory indicates that f = O ( W ) ,  where 
0 -= r < 1. Then in all cases (4.6) may be replaced by 

n[(l+S)bf2+&+a]f’ = - B - p f .  (4.7) 

Equation (4.7) determines the periodic signal function f at the boundary x = 1. 
It is evident from the expression (3.10) that there is an interaction between the 

waves travelling in opposite directions. The a and P waves are non-interacting 
only if the trajectory of an a wave is unaffected by the /3 waves through which it 
passes, and vice versa. A calculation formally neglecting any interaction would 
decrease the value of b slightly and set a equal to zero. The parameter a ( > 0 )  is a 
constant, for a given signalf, and is proportional to the mean off over one period. 
Thus the interaction of the waves increases the travel time of all wavelets by a 
constant and, accordingly, decreases the resonant frequencies by a corresponding 
amount. Consequently resonant Reaks occur to the left of that predicted by the 
linear theory discussed above. If the interaction is neglected, the response curves 
must be translated along the frequency axis by an amount of orderf2. 

The u,p problem is treated in the same manner as the above. In  this case 
w = in( 1 + S), where wo = i n  (n = 1,3,5,  . . .), are the linear resonant frequencies. 
The calculation is longer as expressions for both and PZ - PI must be found. 
This results because now two traversals of the tube correspond to one period 
of the motion. The final equation satisfied by f on x = 1 is again (4.7), where 
p = 2( 1 - k) and - B(7) is replaced by H(7 + w )  - kH(7 - w ) .  

5. Analysis of Merential equation 
In  this section we analyse the integral curves of (4.7) for various ranges of the 

parameters p and 6. The transmission coefficient p introduces damping into the 
system, while 6 measures the deviation from the linear resonant frequency wo. The 
integral curves are used to construct the signal f on2 = 1, which must additionally 
satisfy the zero-mean condition. To ensure that f is single valued, it may be 
discontinuous. This is discussed further in 0 6. 

We first distinguish between the integral curves of (4.7) and the signalfwhich 
further satisfies the zero-mean condition. An integral curve is denoted by Z(q). 
While f is defined only for 0 < 7 < 1 and is then continued periodically, iff is 
continuous andf(0) = f ( l ) ,  f must coincide with an integral curve 2 which is 
both continuous and periodic for all 7. Conversely, a continuous periodic integral 
curve Z which satisfies the mean condition is the required signalf. When such a 
curve exists it is unique. When no such curve exists, f is discontinuous and is 
composed of distinct integral curves. We therefore seek a periodic solution f of 

where a, b,p 2 0, G is 

n[( 1 + 6) bZ2 + S+a] 8’ = G(q)  -pZ, 

a periodic function such that 

/iG(s) ds = 0 
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and we recluire that 

Integrating (5.1) we obtain, for a continuous solution curve 2, 

Qnb(1 +6) [Z3(7)-Z3(0)]+n(6+a) [Z(7)-Z(O)] = [G(s)-pZ(s)]ds. (5 .2 )  L 
When p = 0 equation (5.2) implies that all continuous solutions are periodic. In 
the damped case p > 0,  (5.2) implies that a continuous solution with zero mean is 
periodic and conversely. The existence of a solution with zero mean is easily 
proved by appealing to the continuous dependence of the solutions on the initial 
data Z(0). 

Case 6 > - a , p  > 0 
When 6 > - a  equation (5.1) implies that all integral curves have bounded 
derivatives for all 7. There exists a unique periodic solution f(7) with zero mean. 
When p > 0 this is the only periodic solution. Since the curve 2, = G(v) /p is the 
isocline 2’ = 0 this solution is bounded by the linear solution 2,. 

Forp = 0 equation (5.2) becomes a cubic in Z(7) where all integral curves have 
unit period. This is the solution given by Collins (1971), who, for the u, p problem, 
considered only the case p = 0, 6 > -a. 

C a s e 6 < - a , p = O  

When 6 < - a  and p = 0 equation (5.1) has singular points where both G(7) = 0 
and Z(7) = & q5(6), where q52(S) = - [ (6+a) / ( l+6)] /b  > 0. If the zeros of G(7) are 
at  7 = qi (i = 1, 2,  ...), then in the 7,Z plane the singular points are (ri, f 9). 
The points (q i ,  2 q5) are saddles when G’(rli) 0 and centres when G’(ri);  0. 
The only solution curves which are single valued are those for which Z > q5 or 
Z < - q5 for all 7. All other curves pass through both Z = f 9 and are multi- 
valued. There is consequently no single-valued integral curve with zero mean 
value. All the solution curves passing through Z = 0 have magnitude O(q5). As 
6 -+ - 1, q5 -+ co, which indicates that the nonlinear undamped model is not 
realistic for 6 < -a. It is to be expected that, as the frequency moves away from 
w,,, the linear solution is recovered. This is not implied by the nonlinear equation 
(5.1). However, when 6 = O(&) a consistent matching solution is obtained from 
the appropriate linear equation, i.e. (5.1) with a = b = 0. This yields a continuous 
solution f of order ef. 

Case 6 -= -a, p > 0 

We consider the case 0 < p < 1 so that we are dealing with a resonant motion 
subject to a small amount of damping. As for the u, u problem (see I), we show 
that for a given forcing function there is a critical amount of damping p1 such 
that for p > p1 the signal f is continuous for all frequencies. For p < p1 there is 
a frequency band in which f may be discontinuous. 
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The positions of the singular points of (5.1) now depend on both p and 6.9’ I ince 
they are located at  the intersections of the lines Z = & Q(6) and the curve 
2 = G(v) /p  their number will depend on the shape of G. For any 0, since Q + 00 

as 6 - t -  1, there exists a 6, < -u such that, when 6 < a,, q5 > max IG/,ul. Then 

there are no singular points, but the lines Z = k $ are the isoclines 12’1 = GO. 

6, is defined by 

II 

&6,) = max IGIPI = Gm/P, 

so that 6, = - [ ( a + h ) / ( 1 + W ,  (5.3) 

7 

where h = ~(G,/ ,U)~ > 0. The existence of a unique periodic solution with zero 
mean is not obvious in this case (6 < S,), since any curve crossing 2 = k q5 will 
be multi-valued. It is proved in appendix A that such a solution curve f(7) does 
exist for S < 6, and that f is bounded by the linear solution Z ,  = G(y)/p. 

CaseS, < 6 < -a 

We have shown the existence of a unique, continuous, periodic solution with 
zero mean for the frequencies 6 > - a and 6 < 6, < - a. In both of these ranges 
f is bounded by the linear solution. For the range 6, < 6 < -u the signal func- 
tion may not be continuous. 

When 6, < 6 < -a  there exist isolated singular points which are alternately 
saddles and either nodes or spirals. The possible values of Z’(7) at these points 
are 

h = [ - p ~f: (I*)&]/ f 4nb( 1 + 6 )  q5, (5.4) 

where I*(7) = p2+8nb(l+S)$G‘(y). (5 .5 )  

Hence they are classified as follows: at  the intersection of Z = G/p and Z = Q [ - $1 
there is (i) a saddle point if G’(7) > 0 [ < 01; (ii) a node if G’(7) < 0 [ > 01 and 
I+(7) > 0 [I-(v) > 01; (iii) a spiral if G’(7) < 0 [ > 01 and I+(r) < 0 [1-(7) < 01. 
There is always an even number of singular points per period, the number being 
determined by the magnitude of q5 and the number of relative maxima and min- 
ima of G. We label the saddle points A,A,, . . . and the node/spirals as B,, B,, . . . , 
where A,, B,, A,, . . . lie on Z = q5 and A,, B,, A,, . .. lie on 2 = - q5. There is always 
the possibility that a separatrix connects the points A,, B,+, and An+2. If this 
happens for all n the resulting separatrix is both continuous and periodic (see 
figure 2) and hence, by (5.2), has zero mean. Obviously the nodal conditions, 
I+(y) > 0 at B,,B,, . .. and I-(y) > 0 at B,, B,, ..., are necessary for the existence 
of such a solution. It is proved in appendix B that 

I+(r) > 0 for Ai < 7 < Ai+2 (i = 0,4,  ...),I 
and I - ( y )  < 0 for Ai+, < 7 < Ai+, (i = 0,4,  ...) ! 
is a suficient condition for the existence of a unique, continuous, periodic solu- 
tion with zero mean for a particular frequency 6, < 6 < - a. If GL = max lG’(7) 1 ,  

(5.6) 

(5.5) implies that condition (5.6) can be written as 7 

(6- &-(PI) (6- a+@)) ’ 0, (5.7) 



744 B. R. Seymour and M. P. Nortell 

FIGURE 2. Sketch of solution curve f (7) when p > p,. 

where S*(p) = -&{ l+aT  [(1-a)2-4p4(8nGhdb)-2]$). (5.8) 

Notethat - 1 = 6-(0) < 6- < 6+ < S+(O)  = -aandthat (5.6)issatisfiedforallfre- 
quencies provided that the roots of (5.7) are complex. Thus for a given forcing 
function G(q) there is a continuous periodic solution for any 6 when p > p, > 0, 
where p, is given by 

p: = ( i -a)SnGkJb,  (5.9) 

and also for 6 > S+(p) or 6 < S-(p) when 0 < p < pl. Equation (5.9) implies 
that p, = O(s4). We show in 0 6 that there exists ape  < p, with the same property. 
When there is a spiral a t  any Bi there is no continuous periodic solution. 

Case (&+a1 < O(s),p 2 0 

Equation (5.1) implies that, when I6+al < O(E),  12’1 > O(1) whenever 2 < O(E). 
Thus there is a frequency band of width O(s) about S = - a for which, even though 
the solution may be continuous, the small rate condition is violated. The signal 
on the piston is then determined by a nonlinear functional equation, defined by 
(4.3), (4.4) and (3.10), rather than the differential equation (5.1). Notice that, for 
161 < 1,a = a@). 
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FIGURE 3. p ,  6 plane. No continuous solutions when parameters in shaded area. Breaking 
length of wave less than tube length when the parameters lie between &shed lines. 

6. Discussion 
Here we interpret the results of $ 5  in terms of the regions in the p, &plane where 

the solution curve is continuous or may be discontinuous. The qualitative results 
are compared with experiment. 

The important critical frequencies are 6,(p), defined by (5.3), and S*(p), 
defined by (5.8). Since 6- < a,, for 161 1, the boundaries of the region in the 
p, 6 plane for which continuous solutions are possible are determined by 6, and 
6+. The analysis of 95 then implies that, for p < p l ,  f may be discontinuous for 
6, < 6 < 6+. Equations (5.3) and (5.8) imply that the curves 6,(p) and S+(p) inter- 
sect when 

p3 + bGkp = 8( 1 -a) bnGkG,. 

Equation (6.1) has only one real root, which, to lowest order in E, is 

p, = [8( 1 -a)  ~ T z G ~ G , ] ~ .  (6.2) 

For n = O( I) ,  p, = O(&) < pl. When p > p, the solution f is continuous for all 
frequencies. When p < p, the solution is continuous for 6 < 6, and for 6 > 6+. 
However, since 6, -+ -GO as p -+ 0, there is a more realistic lower edge of the 
‘discontinuous region’ given by 6 = a&), where 6, is the frequency from the cor- 
responding linear system which yields a consistent matching of amplitudes with 
the nonlinear solution. For 0 < p < O(&), 6, is O(d) .  Thus the ‘discontinuous 
region’ is defined by p < p, and 6, < 6 < 6+, where 6, = rnax(al,6J. In this 
region the theory breaks down, for it predicts one or more discontinuities in 
pressure at the piston per period. In  most cases there will be two discontinuities 
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of opposite signs. This is physically unacceptable as it corresponds to both com- 
pression and rarefaction shocks in the gas. In figure 3 we sketch the critical 
frequencies 6,, 8+, 8, and - a  as functions of ,u measured on a scale of powers of E. 

The experimental results of Sturtevant (1972, private communication) are 
that there is a frequency band near the fundamental linear resonant frequency in 
which the pressure o n  the piston is continuous, but contains possible discontinuities 
of slope. The presence of shocks at the open end was first observed and reported 
by Lettau (1939) when the piston was operating at  a multiple of the fundamental 
frequency. For the piston amplitudes used by Sturtevant, shocks appeared 
at  the open end at  the fundamental frequency. These observations indicate 
two properties of the system. The first is that, if the boundary condition (2.4) 
is used to model conditions at an open end, the transmission coefficient ,u is non- 
zero and at least O(E%). The second is that, for a range of frequencies, the ‘breaking 
length’ of a wave (i.e. the minimum distance it takes for a shock to form) is less 
than the length of the tube. Since the ‘breaking length’ is proportional to 
[maxf’(y)]-l this indicates that for certain frequencies f ‘  3 O( 1). The results of 
04 v< 1 
$ 5  predict that this is the case for I8+al < O(c).  Since there is significant dis- 
tortion in one traversal of the tube the small rate theory of $4 is invalid and the 
nonlinear characteristics must be used to describe the propagation of a wave. Then 
a shock forming between the piston and the open end is reflected as a rarefaction 
wave with a discontinuous slope. Since these ‘shock frequencies’ are only a small 
part of the frequency band in which the gas motion is amplified, it is not expected 
that shock dissipation is the primary attenuating mechanism. This is supported 
by a consideration of the balance of energy. Since the input energy a t  x = 1 is 
O(ef) ,  shock dissipation O(f3) and radiation loss O(,ujp), a balance dominated by 
shock dissipation would yield f = O(s$),  When ,u = O(&) radiation would be the 
dominant attenuating mechanism, yielding f = O(s*). In  Lettau’s experiments 
Z/L 2: 3 x (1 is the amplitude of the piston displacement) and this is an order 
of magnitude less than in Sturtevant’s experiments (ZIL M 1.4 x 10-2) .  The fact 
that shocks were observed by Lettau at  the open end only at  a multiple of the 
fundamental frequency, and not at  the fundamental, is further evidence of the 
finite rate effect which has been carefully discussed in I. 

Van Wijngaarden observed the maximum response amplitude at a frequency 
less than the linear resonant frequency. In  5 4 we noted that the nonlinear inter- 
action of the waves gives rise to the same qualitative feature. Nevertheless we 
must be circumspect in ascribing the frequency shift solely to  the nonlinear inter- 
action. For example, in the experiment reported by van Wijngaarden the fre- 
quency shift is O ( d ) ,  whereas the frequency shift due to nonlinear interaction is 
O(e). For these experimental conditions the theory of Levine & Schwinger (1948), 
in which the radial distribution of radiated energy is accounted for by a ‘ correc- 
tion’ to the length of the pipe, gives the observed order of magnitude of the fre- 
quency shift (of order RIL, where R is the radius of the pipe). In  Sturtevant’s 
experiments E E 1.4 x indicating that for f N O(&) the 
nonlinear shift could be dominant. This could, perhaps, be determined more 
definitively by further experiments. If it were dominant, then the practice of 

while RIL N 
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determining the 'length' of the column of gas by adjusting the frequency to 
obtain the best fit of experimental and theoretical results and using the results of 
Levine & Schwinger to calculate L would be suspect. 

The results in this paper were obtained in the course of research sponsored in 
part by the U.S. Army under Contract DAAD05-71-C-0389 and monitored by 
the Ballistics Research Laboratories, Aberdeen Proving Ground, Maryland, and 
in part by the Army Research Office at Durham under grant DA-ARO-D-31- 
124-724247 to New York University. 

Appendix A 
Here we prove the existence of a continuous periodic solution of (5.1) with 

zero mean for 6 < 6,. If such a curve exists it is obviously unique. 
By definition, when 6 < a,, Gm/p < 4. Consider an integral curve Z,(q) such 

that Gm/p < Zl(ql) < q5 for some 7,. Then, by (5.1), Z;(ql)  < 0 and, since 
Z = G(q)/,u is the isocline 2' = 0, 

- q5 < - GJp < Z,(p) < gi for all 7 < ql. (A 1) 

Thus, since 2; = f $ are the isoclines 12'1 = 00, Z;(q) is bounded and Z,(q) 0011- 
tinuous for q < rl. Letting qo = q,-n (n = 1,2, ...) and using condition (2.6), 
(5.2) may be written as 

4 4 1  +@ [Z,(Tl) - - ~ 1 b l o ) I { ~ ~ ( r 1 )  -q5"+%Io) - q 5 2 + ~ l ( ~ l ) ~ l ( ~ o ) - q 5 2 1  

= -p/:;Z,(s)ds. (A2) 

Equations (A 1) and (A 2) then imply that 

j ; ;Z,(s)ds > 0. 

By considering an integral curve Z2(q), such that -q5 < Z2(ql) < -G,/,u, over 
the interval (yo, ql)  a similar argument shows that Z,(q) is continuous and satis- 
fies 

Since all integral curves between 2, and Z2 are continuous in (qo, q,), there exists a 
curve Z ( q )  such that 

j ; ;e (s )ds  = 0.  

Equation (5.2) then implies that Z ( q l )  = Z(ql-n) (n = 1, 2, ...). Z(q) is contin- 
uous and periodic with zero mean value. 
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Appendix B 
We prove the result used in $ 5 :  a sufficient condition for the existence of a 

continuous periodic solution of (5.1) for a given 6 < -(a+ el), for any 8, > 0, is 
that 

and 
I+(7)  = p2+ 2BG‘(7) q5 > 0 for A,  < 7 < A ,  (B 1) 

I-(q) = p2- 2BG’(7) q5 > 0 for A ,  < 7 < A,, (B 2) 

whereB = 4nb(1+6). 
We wish to prove that the separatrices leaving the saddle points a t  A,  are 

continuous, single valued and end at the adjacent node. We shall show that, under 
condition (B l) ,  the separatrix 2; leaving A ,  a t  (O,, 9) reaches B,, located at  
(O,, #), 8, < 8,. The other proofs are similar. 

First, since the curve G(r)/p is the isocline Z’(7) = 0, and Z(7) 4 q5 yields the 
isocline Z’(7) -+ + 00, the separatrix 2; is continuous and differentiable in 
(8,, 0,) and satisfies 

(%/b)B < @ < Z m )  max{G(7)/4. 
7 

In  particular, 2$(8,) b #. We show that 2;(8,) = q5 by bounding 2 4  above by a 
function Y(7)  which has the properties 

Y(7)  > # for 8, < 7 c 8 and Y(8,) = Y(0,) = q5. 

Such a curve bounds 2; if dZ$/dy < Y‘(T),  for all 7 in [So, el], whenever 2; = Y .  
The curve Y(7)  = 2G(7)/p - q5 has these properties whenever (B 1) holds. For, 
since when 6 < - (a + 8,) (5.1) may be written as 

2’ = 4(6-,~Z)/B(Z-q5) (Z+q5), 

when Z$ = Y ,  dZ$/dq = -p2/BG. But (e,/b)# < # < G(q)/p for 0, < 7 < 8,, and 
thus 

whenever (B 1) holds. Hence the result. 
Note added in proof. Recently, Jimenez (1973) used the adaption of Lin’s 

technique given in Mortell(l971) to discuss resonant motions in both closed and 
open pipes for the special piston motion H(7)  = sin2n7. The idea of characteriz- 
ing an interface in a nonlinear problem by a reflexion (or impedance) coefficient 
was given in Mortell & Varley (1970), and was used in Mortell & Seymour (1972, 
1973) and in I. This model is also used by Jimenez. The analytical results given 
here and in I contain all the results of the special case considered by Jimenez and 
additionally confirm the results of his extensive numerical work. A major 
difference between our work and that of other authors is our recognition of the 
small rate limit (see 9 2 of I and $ 4 here) and its inherent limitations. The ordinary 
differential equations which are invariably used to determine the shape of the 
signal are valid only in the small rate limit when signals travel undistorted as 
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acoustic waves. Then, if the pressure signal on the piston is continuous, it is 
continuous everywhere in the pipe. A Jinite rate theory must be used to explain 
an observation that the pressure on the piston is continuous, but shocks may 
appear a t  the open end (see $6). The assumption that a resonant motion lies in 
the neighbourhood of a linear standing wave (Mortell (1971) or equivalently 
equation (3.21) of Jimenez (1973)) is again valid only in the small rate limit. 
A full discussion of a finite rate theory, which necessitates an analysis of a 
functional difference equation, is in preparation. 

REFERENCES 
COLLINS, W. D. 1971 Forced oscillations of systems governed by one-dimensional non- 

JIMENEZ, J.  1973 Nonlinear gas oscillations in pipes. Part 1. Theory. J. Fluid Mech. 

LETTAU, E. 1939 Dtsch. Krajgahrtforsch. 39, 1. 
LEVINE, H. & SCHWINGER, J. 1948 On the radiation of sound from an unf-langed circular 

LIN, C. C. 1964 On a perturbation method based on the method of characteristics. J. 

MORTELL, M. P. 1971 Resonant thermal-acoustic oscillations. Int. J. Engng Sci. 9, 175- 

MORTELL, M. P. & SEYMOUR, B. R. 1972 Pulse propagation in a nonlinear viscoelastic 

MORTELL, M. P. & SEYMOUR, B. R. 1973 The evolution of a self-sustained oscillation in a 

MORTELL, M . P .  & VARLEY, E. 1970 Finite amplitude waves in a bounded media: 

SEYMOUR, B. R. & MORTELL, M. P. 1973 Resonant acoustic oscillations with damping: 

VAN WIJNGAARDEN, L. 1968. On the oscillations near and at  resonance in open pipes. 

linear wave equations. Q. J. Mech. Appl. Math. 24, 129-153. 

59, 23-46. 

pipe. Phys. Rev. 73, 383-406. 

Math. Phys. 33, 117-134. 

192. 

rod of finite length. SIAM J. App. Math. 22, 209-224. 

nonlinear continuous system. J. Appl. Mech., Trcans. A.S.M.E. 95, 53-60. 

nonlinea,r free vibrations of an elastic panel. Proc. Roy. SOC. A 318, 169-196. 

small rate theory. J. Fluid Mech. 58, 353-374. 

J .  Engng Math. 2 ,  225-240. 




